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Growth rate of nonthermodynamic emittance of intense electron beams

Bruce E. Carlsten
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 25 November 1997!

The nonlinear free-energy concept has been particularly useful in estimating the emittance growth resulting
from any excess energy of electron beams in periodic and uniform channels. However, additional emittance
growth, that is geometrical rather than thermodynamic in origin, is induced if the particles have different
kinetic energies and axial velocities, which is common for mildly relativistic, very intense electron beams. This
effect is especially strong if particles lose or gain significant kinetic energy due to the beam’s potential
depression, as the beam converges and diverges. In this paper we analyze these geometric emittance growth
mechanisms for a uniform, continuous, intense electron beam in a focusing transport channel consisting of
discrete solenoidal magnets, over distances short enough that the beam does not reach equilibrium. These
emittance growth mechanisms are based on the effects of~1! energy variations leading to nonlinearities in the
space-charge force even if the current density is uniform,~2! an axial velocity shear radially along the beam
due to the beam’s azimuthal motion in the solenoids, and~3! an energy redistribution of the beam as the beam
compresses or expands. The geometric emittance growth is compared in magnitude with that resulting from the
nonlinear free energy, for the case of a mismatched beam in a uniform channel, and is shown to dominate for
certain experimental conditions. Rules for minimizing the emittance along a beamline are outlined.
@S1063-651X~98!01108-8#

PACS number~s!: 41.75.Ht, 03.50.De, 29.27.Bd
c
ea
id

ia
.
n

er

t
t
o
th
a
st
s-
a
is
it

ni
ha
an
s
it

d
n

a

le

ses
ion.

o a
al
ar
or-

,
ing
nt,
cus
r is
er-

wth
as

eo-
tric

e
bles
s
n-

. In
en-
ar

reas
cts
. In
he
rs,

m
um

is
am;
I. INTRODUCTION

In this paper we will analyze some dominant emittan
growth mechanisms of a continuous, intense electron b
in a transport channel made up of short discrete soleno
where the normalized, rms emittance is defined by

«5gbA^r 2&^r 82&2^rr 8&2/2, ~1!

g is the relativistic mass factor,b is the axial velocity nor-
malized to the speed of light, the prime refers to an ax
derivative, and the brackets indicate ensemble averages
though the emittance defined this way is not strictly co
served~if the beam has a nonzero energy spread and eith
accelerated or experiences linear focusing!, it is a practical,
geometrical definition, because it relates the emittance to
minimum rms beam size achievable for a drifting beam a
waist or target position. We will assume that the transp
channel is short with a few discrete focusing elements,
focusing is not necessarily periodic, and the electron be
does not reach an equilibrium or periodic phase-space di
bution. For simplicity in the analytic treatment, we will a
sume that the beam is laminar with uniform density, and
focusing elements are perfect with no fringe fields or m
alignments, which eliminates several very significant em
tance growth mechanisms, such as the corkscrew mecha
@1–3# and radial aberrations in the focusing. The mec
nisms we will study here are based on kinetic energy
axial velocity variations of the particles in the beam. The
variations will lead to an increase in the geometrical em
tance, as defined by Eq.~1!, but will not lead to an associate
increase in the beam’s entropy. Since these effects are
thermodynamic in nature, they are not included in stand
analyses of the nonlinear free-energy mechanism@4–6#. The
most important of these mechanism results from partic
PRE 581063-651X/98/58~2!/2489~12!/$15.00
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gaining and losing kinetic energy as the beam compres
and expands, from the beam’s own potential depress
Even if the applied forces are linear@specificallyd(g ṙ )/dt
for each particle is linear in radius, where the dot refers t
time derivative#, variations in the kinetic energies and axi
velocities of the particles will lead to effective nonline
terms in the radial equation of motion where the axial co
dinate is used~specificallydr8/dz for each particle will not
be proportional to the particle’s radius!. These mechanisms
which have been previously largely ignored, are becom
important for a new, emerging generation of high-curre
low-emittance induction linear accelerators, and are the fo
of this paper. The emittance growth described in this pape
essentially geometric in nature, and is not related to the th
modynamic energy of the beam. Since this emittance gro
results from energy variations, it could also be referred to
a chromatic emittance growth, but we choose the term g
metric because the growth arises from using the geome
emittance definition, Eq.~1!, instead of using the emittanc
defined by the ensemble averages of the conjugate varia
r and g ṙ . Additionally, we do not want these mechanism
confused with the chromatic effects resulting from the e
ergy spread that exists axially along a finite-length bunch
regards to recent discussions relating beam emittance to
tropy @7,8#, the emittance growth described by the nonline
free energy is related to a real increase in entropy, whe
the emittance growth resulting from the geometrical effe
studied here is not related to a real increase in entropy
this manner, this type of emittance growth is similar to t
nonequilibrium emittance growth seen in photoinjecto
which can be compensated@9–13#, leading to an emittance
that initially grows and then decreases to a final equilibriu
value often between a fourth and a tenth of the maxim
emittance. The nonequilibrium emittance in photoinjectors
axial in nature due to the pulsed nature of the bunched be
2489 © 1998 The American Physical Society
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2490 PRE 58BRUCE E. CARLSTEN
the geometric emittance studied in this paper is radia
nature because the beam is continuous.

Much of the previous work on the emittance growth
electron beams in focusing channels@4–6# has concentrated
on the powerful approach of the evolution of nonlinear fr
energy. This concept is based on the fact that station
states of the channel~using either periodic or uniform focus
ing! are minimum-energy states~for given second moment
of the beam, including its rms emittance!. Thus a beam in a
nonstationary distribution state will have a higher energy
particle than the equivalent stationary state, and will try
relax to the stationary state with that amount of average
ergy per particle. The higher-energy stationary state w
have larger second moments, including the rms emitta
than the initial distribution. This relaxation will be triggere
by any nonlinear forces present; beam density nonunifor
ties typically relax in about a quarter-plasma period, a
beam mismatches or transverse offsets typically relax w
distances on the order of the betatron motion. The ene
conservation leading to this effect exists because the sta
ary states are eigenstates of the Hamiltonian of the sys
Strictly, this conservation property only exists for the Ham
tonian conjugate variablesr and g ṙ . The beam rms emit-
tance is typically defined with the variablesr andr 8; thus an
equivalent conservation property for the rms emittan
growth also exists for these variables if all particles are
sumed to have the same energy and axial velocity. Howe
for intense electron beams, this assumption fails, as we d
onstrate in this paper. The result is that there can be a n
thermodynamic increase in the beam’s rms emittance, wh
is not related to the particles’ average energy. It could
argued that this then is not a real emittance increase; h
ever, the normalized rms emittance as defined in Eq.~1! will
increase, as will the minimum achievable rms waist radius
the beam is focused.

Here, we will carefully expand the relativistic radial equ
tion of motion for a uniform-density, laminar electron bea
and find that several nonlinear terms arise from the variati
in the particles’ energies. In fact, even though the beam
tribution is uniform and the space-charge force is radia
linear, these other terms can lead to emittance growths
accumulate along the beamline. The mechanisms that h
the largest emittance growth rates result from energy fluc
tions due to the particles’ radial motion and axial veloc
variations due to the particles’ azimuthal motion within t
solenoids. These mechanisms can lead to very signifi
emittance growth rates for initially low-emittance beam
with uniform densities; the normalized emittance grow
rates due to these mechanisms also do not necessarily
crease with increasing beam energy, unlike that arising fr
the space-charge force if the beam density is nonunifo
Thus the emittance growths discussed in this paper ar
very practical concern for low-emittance, high-current, re
tivistic accelerators, where special care has been take
design an electron gun producing a uniform-density be
One goal of this paper is to develop formulas that can
used by induction-accelerator beamline designers as a fi
of merit. This formalism does not assume uniform or pe
odic focusing, and can be used to estimate the emitta
growth of electron beams in nonperiodic focusing structu
where no equilibrium beam distribution exists, as seen
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many existing and proposed beamlines. Using numer
simulations, we additionally demonstrate that these mec
nisms also lead to the beam density hollowing out.

We will start by constructing the radial equation of m
tion including the effect of both the space-charge force a
the focusing force from a perfect, hard-edged solenoid. Th
we will examine the emittance growth for the effects ou
lined above, making the assumption that the emitta
growth is primarily due to changes in the particles’ rad
velocities and that the beam density profile essentially
mains constant. Although this procedure does not lead
self-consistent beam stationary state solution, this proced
is common for estimating emittance growth rates of noneq
librium electron beams~see Refs.@12,14#, for example! and
will lead to insights into the emittance growth mechanism
Finally we will compare the emittance growth from a mi
matched beam from this effect with that estimated by
nonlinear free energy, and demonstrate that for sufficien
intense, relativistic, low-emittance electron beams, the ef
from the energy variations will dominate.

II. DERIVATION OF THE RADIAL EQUATION
OF MOTION, INCLUDING NONLINEAR

FOCUSING FORCES

In this section we wish to derive an expression for t
radial equation of motion that we can use to examine vari
emittance growth mechanisms. In particular, we wish to h
an expression we can use to estimate the emittance gro
for a laminar, uniform-density beam.

We will consider the radial equation of motion for a pa
ticle, and to expand the force terms for a specific parti
around the force seen by a nominal particle at the bea
center. We will then assume that each particle experienc
constant force over some axial distancel as they drift. Once
this is done, the emittance growth can be easily evaluated
performing the ensemble averages in Eq.~1!, since we are
assuming that the radial current density remains const
This approach will not deal with correlations in the emittan
growth relative to the initial distribution. Since we are inte
ested in the emittance growth from nonlinear components
the space-charge and focusing forces, we will expand
radial equation of motion carefully.

Radial force equation

The radial equation of motion for a particle within th
beam within the central part of a solenoid~where the applied
magnetic field from the solenoid is purely axial! is given by

m
d~g ṙ !

dt
5eEr1e~vuBdia2vzBu!1evuBext1

gmvu
2

r
,

~2!

where Bext is the total external axial magnetic field~from
both the solenoid and the diamagnetic effect from the im
currents in the beampipe!, Bdia is the induced diamagneti
axial magnetic field from the beam current opposing the
lenoidal field,Bu is the azimuthal magnetic field from th
space charge, andEr is the radial electric field from the
space charge, all at the position of the particle, ande andm
are the electronic charge and mass, respectively. Mos
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these terms are mostly linear with radius. For balanced fl
~the beam edge is at a constant radius!, the linear compo-
nents cancel. ThevzBu term mostly cancelsEr ~to order
1/g2!. For balanced flow, the solenoid strength is adjus
such that the linear part of the combination ofevuBext and
the centrifugal force will cancel the linear part of the resu
ing space-charge force. There is also a potential depres
within the beam~a variation ofg that is a function of radius!.
Our approach will be to expand the radial equation of mot
in terms of the variation ofg, to lowest order, which we will
then use to estimate the emittance growth for various ca

We will assume that the particles have no intrinsic an
lar momentum~there is no axial magnetic field at the loc
tion of the cathode! and that the external magnetic field
radially constant. Thus the azimuthal velocity can found
application of Busch’s theorem@15# ~the conservation of an
gular momentum!:

vu52
e

gmr E0

r

~Bext1Bdia!n dn, ~3!

wheren is a dummy variable for the radial integration. W
will assume that any radial divergence of the beam is sm
and use Gauss’s law to find the radial electric field,

Er~r !5E
0

r r~n!n

«r
dn, ~4!

wherer is the charge density. The diamagnetic field is giv
by

Bdia5E
r

r b
mvu~n!r~n!dn, ~5!

where r b is the radial edge of the beam. The diamagne
field is small, and, to first order, only the azimuthal veloc
depending on the externally applied solenoidal field need
be considered in Eq.~5!. The relativistic mass factor is give
by

g~r !5ga1g1~r !5ga1E
0

r eEr~n!

mc2 dn, ~6!

wherega is the mass factor along the axis (r 50). Let us
assume that the space-charge density is of the formr
5r0r n. Explicit evaluation of the above integrals for th
charge density profile gives

Er5
r0

«~n12!
r n11,

g15
e

mc2

r0

«~n12!2 r n125
eEr

mc2

r

n12
,

Bdia

Bext
52

me

2mg

r0

~n12!
~r b

n122r n12!52S gb

ga
2

g1

ga
D n12

2
,

~7!

where we have now introducedgb as the difference in the
relativistic mass factor between the center and the ra
edge of the beam. We can manipulate the axial field com
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nents in order to find a more useful form. The total magne
field B in terms of the diamagnetic component and the to
externally applied fieldBext is given to lowest order by

B5BextS 11
Bdia

Bext
D5BextF12

gb

ga
S n12

2 D1
g1

ga
S n12

2 D G
5BaF11

g1

ga
S n12

2 D G , ~8!

whereBa is the total axial magnetic field along the axisr
50). If the charge density is uniform (n50), the total axial
magnetic field and the relativistic mass factor have the sa
radial dependency,

B5BaS 11
g1

ga
D ,

g5gaS 11
g1

ga
D . ~9!

Note thatg1 depends quadratically on the beam radius, a
is positive@see Eq.~7!#.

The azimuthal velocity in terms of the magnetic field o
axis and the relativistic mass factor on axis is given by

vu52
eBar

2gam S 11~g1 /ga!~n12!/~n14!

11g1 /ga
D . ~10!

Note that the azimuthal velocity is not radially linear even
the space-charge density is uniform (n50).

The beam-induced azimuthal magnetic field in Eq.~2! is
given in terms of the vector potential by

Bu5
]

]z
Ar1

1

r

]

]r
rAz . ~11!

If the beam is converging or diverging, there is a nonze
radial vector potential, and if the beam is being focused i
solenoid, the axial derivative of the radial vector potentia
nonzero@16#. The term corresponding to the axial derivativ
of the radial vector potential tends to average out for a la
nar beam and will not result in an appreciable emittan
growth, and we will ignore it.

At this point, we have written out all the terms on th
right-hand side of the radial equation of motion, and we c
evaluate the nonlinear terms. For the emittance analysis
want the radial divergence instead of the radial velocity,
we still need to change the variable of differentiation on t
left-hand side of the radial equation of motion.~This change
of variable is what induces the geometric emittance grow!
Using dots to refer to time derivatives and primes to refer
axial derivatives, we have

d

dt
g ṙ 5 ṙ

dg

dt
1g r̈ 5

eEr

mc2 ṙ 21g r̈ . ~12!

With the definitionsva being the axial velocity along the axi
andv being the relative axial velocity,

vz~r !5va1v~r !, ~13!
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Eq. ~2! becomes

r 9mva
2S 112

n

na
D5

eEr

gg* ~r !2

1
1

g S evu~Bext1Bdia!1
gmvu

2

r D
2

e

c2g
v0

2Err 82, ~14!

where g* is an effective relativistic mass factor we wi
evaluate later. To lowest order in the small quantities,
radial force equation becomes in terms of the parame
evaluated on axis

r 95F eEr

mva
2gag* ~r !2 S 12

g1

ga
D

2
e2Ba

2r

4ga
2m2va

2 S 11n
g1

ga
D2

eErr 82

gamc2G S 122
v
va

D .

~15!

The focal length of a solenoid of lengthl for the beam
near the axis is defined by

f 5
4ga

2m2va
2

le2Ba
2 ~16!

and so the change in the radial divergence after a lengl
becomes

dr 85F leEr

mna
2gag* ~r !2 S 12

g1

ga
D2

r

f S 11n
g1

ga
D

2
leErr 08

2

gamc2 G S 122
v
va

D , ~17!

wherer 08 is the initial beam divergence.
If the charge density is uniform, the change in the rad

divergence becomes

dr 85F leEr

mna
2gag* ~r !2 S 12

g1

ga
D2

r

f

2
le

gamc2 Err 08
2G S 122

v
va

D . ~18!

Note that the effect of the potential depression of the be
exactly cancels the effect of the diamagnetic effect, lead
to a purely linear focusing force. The apparent nonlineari
in this equation~which governs the emittance growth! are~1!
the term modifying the space-charge force, which res
from the variations in the different particles’ relativistic ma
factors,~2! the last term within the square brackets, whi
results from how the particles’ mass factor changes as
beam converges or diverges, and~3! the last term in the fina
parentheses, which results from variations in the partic
axial velocity. If the emittance is defined by the rms e
semble averages ofr and g ṙ , it would not grow, reflecting
e
rs

l

m
g
s

ts

e

s’
-

the fact that the growth in the emittance defined in the us
way @Eq. ~1!# does not reflect a thermodynamic change in
beam distribution.

III. EMITTANCE GROWTH ESTIMATES

In this section we will estimate the emittance growth d
to variations in particle energies and axial velocities,
typical focusing scenarios of a uniform-density, lamin
beam. We will make the assumption that this emittan
growth adds in quadrature with a beam’s initial emittan
for a beam with nonzero initial emittance. This assumpt
really has two parts:~1! the emittance growth for a nonlam
nar beam is the same as for a laminar beam and~2! the
beam’s initial emittance is uncorrelated with the emittan
growth. These resulting emittance growths are not deriva
from nonlinear free-energy considerations@4–6#, but instead
arise from geometric nonlinearities in the introduced rad
divergence@Eq. ~18!#—in particular, from ~1! the g1 /ga

term multiplying the space-charge force,~2! the r 08
2 term,

and ~3! the v/va term. The emittance growth from~1! is
physically due to a nonlinearity in the radial equation
motion because a particle’s radial acceleration depends o
relativistic mass, in addition to the space-charge force. T
emittance growth from~2! arises from the fact that even
the radial momentum change is linear, if particles at differ
radii gain or lose energy at different rates, this will lead to
nonlinearity in the radial equation of motion forr 8. Because
of issue~3!, particles at different radii inside a solenoid en
up spending a different amount of time experiencing the
lenoid’s focusing fields~and thus are affected by a differen
focal length!.

We will assume that the focusing elements are thin
simplicity. In the emittance growth formulas that we deri
later, the focusing element length is important only for t
case of the variation of axial velocities in a solenoid.

The emittance growth from the nonlinear space-cha
force term scales as 1/g3 ~if the density is nonuniform it
scales as 1/g2!. Thus, as the beam is accelerated, the em
tance growth from this effect vanishes, and, for most bea
lines with acceleration, the net accumulated emittan
growth is small. However, the emittance growths from t
other effects do not necessarily decrease as the beam i
celerated, and very large net emittance growths can oc
even for beamlines with acceleration. Clearly, the corre
tions between particle motion and the nonlinear forces w
have an important effect on the net emittance growth, wh
will not be considered beyond some simulation results p
sented in the following section; however, the emittan
growth rates derived in this section still can be used to e
mate the emittance growth in beamline designs.

A. Balanced uniform flow

In this section we will assume that the focusing just b
ances the radial space-charge force near the axis of the b
and that the initial beam divergence vanishes,r 0850. In this
case, the third term within the first parentheses in Eq.~18!
vanishes, and any nonlinearity introduced in the radial div
gence comes from the nonlinearity in the first term within t
first parentheses~all nonlinear effects from terms within th
second parentheses are second order!.
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Balanced flow means that

leEr

va
2ga

3 5
r

f
5

le2Ba
2r

4ga
2mva

2 . ~19!

There is clearly a nonlinearity in the space-charge force
sociated with the beam’s potential depression, but it is a
instructive to investigate the linearity of theg* factor in the
space-charge term.

The space-charge radial electric field at a radial positior
from a ring at radiusn is given by

dEr5
r0n

«r
dn. ~20!

The radial force atr is then given by

Fr~r !5E
0

r er0n

«r
@12b~r !b~n!#dn, ~21!

which is easily evaluated as soon as we have an expres
for the axial velocity as a function of radial position.

The axial velocity is found from the conservation of e
ergy:

12bz
22bu

25
1

g2 5
1

ga
2 S 12

2g1~r !

ga
1

3g1~r !2

ga
2 D , ~22!

where, as before,ga is the normalized beam energy along t
axis andg1(r ) is the beam energy change from the axis, a
we have kept this equation to second order ing1 /ga . From
before, we know that the azimuthal velocity is given to lo
est order by

bu
25S eBar

2gamcD
2

52
g1

ga
3 , ~23!

using the condition of balanced flow@Eq. ~19!# and the rela-
tion between the radial electric field and the potential dep
sion for a uniform beam. Using this expression in Eq.~22!,
we find

12bz
25

1

ga
2 S 11

3g1
2

ga
2 D , ~24!

and any variation in the axial beam velocity is second or
in the small quantities. Thus the entire beam essentially
the same axial velocity, and indeedg* 5ga , to first order in
g1 /ga . This is a more general case of the same well-kno
effect for Brillouin flow for tenuous electron beams@15#.

In order to estimate the emittance growth from the no
linear contribution from the radial space-charge force,
start with the nonlinear part of Eq.~18!,

dr 852
leErg1

mva
2ga

4 . ~25!

In terms of the beam current, the radial electric field is giv
by
s-
o

ion

d

s-

r
as

n

-
e

n

Er5
Ir

2p«r b
2va

. ~26!

Using the definition of the Alfve´n current (I A
54p«mc3/e), we can rewrite the change in the beam dive
gence as

dr 8522
I 2lr 3

I A
2b4ga

4r b
4 , ~27!

whereb5va /c. After doing the ensemble averages~recall
we are assuming that the initial beam density is uniform!, we
find that the normalized, 90% emittance is

«5 l
&I 2

12b3ga
3I A

2 . ~28!

For a 4-kA beam at 6 MeV~the rough parameters of th
Integrated Test Stand~ITS! induction linac at Los Alamos
@17#!, the emittance growth is about 3.2(1026) l . Note that
this emittance growth is independent of beam radius.

We would not expect that the emittance would grow u
bounded at this rate. The beam density will continue to
cillate about the equilibrium density~somewhat lower at the
beam edge than at the beam center!, with the emittance os-
cillating also, with a period equal to one-half of the plasm
period. For this case, the generalized perveanceK
52I /I A(bga)3 @6# is 2.331024, and the beam travels a dis
tancepr b/2A2K52.2 m in a quarter-plasma period.

There are three features of this emittance growth
should note. First, this emittance growth is only a function
beam energy and current. Second, it is a small effect, and
that vanishes quickly as the energy is increased. Third,
emittance growth from this effect will oscillate for a lamina
beam, and the emittance will vanish at integer multiples o
half-plasma wavelength.

We can verify these conclusions using the relativis
particle-pushing codeSLICE @18#, which uses the Lorentz
force equation along with external fields and the beam’s s
fields to calculate particle trajectories. For a balanced, mo
kinetic-energetic beam that should have no emittance gro
according to Eq.~18! ~here the beam is injected with equ
kinetic energies at all radii, ignoring the potential depress
of the beam!, the numerical error due to the interpolation
the particles’ positions leads to an emittance oscillation t
is roughly of the size of 0.35(1023) m divided by the num-
ber of particles in the simulation@in other words about
0.35(1026) m for 1000 simulation particles, which is negl
gible#. In Fig. 1 we show simulation results for a balanc
beam injected with uniform total energy~kinetic plus poten-
tial! with the above parameters. The initial emittance grow
rate is very close to 2(1026) m per meter of drift, and oscil-
lates with a period corresponding to a half-plasma peri
Note that the emittance growth results from a different
rotation in phase space, shown in the phase-space plot a
final axial location~28 m! in Fig. 1~c!. Close inspection of
the phase-space plots at different axial locations shows
this differential rotation changes sign in successive emitta
oscillations, and the curvature in the final phase-space plo
of the correct sign. This oscillation is very different than t
emittance growth resulting from the nonlinear free energy
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FIG. 1. Numerical results for the balanced flow case.~a! Radial beam profile.~b! Emittance profile, showing correlated oscillations.~c!
Final beam phase-space plot, showing differential betatron rotation.
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which case the emittance growth is permanent as the b
relaxes to the new stationary state. Also note for the c
shown in Fig. 1, there is no nonlinear free energy, and
resulting permanent emittance growth due to an exces
thermodynamic energy.

In Fig. 2 we show simulation results where the beam
mismatched in the uniform-focusing channel, and the L
entz force equation was modified so effects from ene
variations from beam compression and expansion@the third
term in the first parentheses in Eq.~18!# were ignored. Note
for this case the envelope period is about 5.75 m. The e
tance@Fig. 2~b!# still oscillates, but now the oscillation pe
riod is a beating between the envelope period and the h
plasma period, and the magnitude of the oscillatio
increases at an approximate rate of 2 mm mrad per mete
Fig. 2~c! we see that the emittance growth is still due to
differential rotation in phase space. The emittance osc
m
se
o
of

s
-
y

it-
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s
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tions are now driven by variations in the particles’ axial v
locity in the space-charge force termg* in Eq. ~18!, as the
beam compresses and expands. We attribute the increa
the magnitude of the emittance oscillations to a parame
pumping of the differential betatron rotation by the oscill
tions of the beam core. Although the emittance does van
at the proper axial locations, this effect may be problema
in actual accelerators, especially if the phase space mixe

B. Axial velocity variations in a solenoid

Now let us consider the effect from the spread in the ax
velocity of the beam within the solenoid. The variation in t
axial velocity (vz5va1v) is given by

v5
g1

ga
3

c2

va
2

c2

2va
b r

22
c2

2va
bu

2, ~29!
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FIG. 2. Mismatched beam with uniform focusing~modified Lorentz force equation ignoring energy variations from beam compres
and expansion!. ~a! Radial beam profile.~b! Emittance profile.~c! Final beam phase-space plot.
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where va is the axial velocity at the center of the beam
Inside the solenoid, the azimuthal velocity term dominat
and we find

v52
c2

2va
bu

252
e2Ba

2r 2

8ga
2m2va

. ~30!

This leads to the divergence in the beam introduced by
solenoid~ignoring all terms except for the terms dependi
on the solenoid’s focal length! as

dr 852
r

f S 122
v
va

D52
r

f S 12
r 2

l f D . ~31!

The normalized, 90% emittance growth from the nonline
part of this divergence is now
.
,

e

r

«5
1

12&
ga

r b
4

l f 2 . ~32!

For the case of the ITS final focus solenoid~solenoid length
is about 10 cm, focal length is about 60 cm, and the be
radius is about 3 cm!, the emittance growth is about 18 mm
mrad. If the beamline consists of several discrete soleno
with the beam being focused tightly between them, the em
tance from this effect may or may not accumulate, depend
on the relation between the beam’s betatron period and
spacing between solenoids. For laminar flow between s
noids, there is also an axial velocity shear, which depe
both on the radial divergence of the beam and the poten
depression of the beam. If the radial divergence effect do
nates, particles at the center of the beam still have a gre
axial velocity, and the nonlinearity here will tend to canc
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the nonlinearity induced inside the solenoids. If the beam
potential energy effect dominates, particles at the cente
the beam have a smaller axial velocity, and the nonlinea
here will tend to add to the nonlinearity induced inside t
solenoids.

C. Gentle scalloping case

In general, the beam is not in completely balanced, u
form flow or being focused hard to a waist. The solenoids
usually discrete, and the beam-edge radius gently undu
down the beamline. Alternatively, we can have scalloping
the beam is mismatched into a uniform-focusing chann
We can estimate the emittance growth for a lengthl of scal-
loping motion, by using the divergence term in Eq.~18!
while assuming that the beam radius is a constant.

In this case, the accumulated nonlinear divergence aft
length l is given by

dr 852 l
eErr

2

gamc2r b
2 ā2522

I lr 3

gabI Ar b
4 ā2, ~33!

where nowā is the rms divergence of the scalloping of th
radial beam edge. For this case, the normalized, rms e
tance growth is given by

«5
&

12
l

I

I A
ā2, ~34!

or

«5
&

24
l

I

I A
~dke!

2, ~35!

if the radial oscillation is sinusoidal,d is the magnitude of
the radial oscillations, andke is the envelope oscillation
wave number. Note that the beam radius and energy are
present in these equations. For the numbers used in the
vious examples with a rms divergence of 20 mrad, the n
malized, rms emittance growth is about 1.1(1025) l , which
can become large if this emittance growth is accumula
over a long distance. Note that the worst situation is if
beam flow is laminar, because the particles’ phase spac
disrupted in the same manner if the beam is converging
diverging. There will also always be an accumulation ove
long distance when the beam is in the emittance-domina
regime; but the exact rate depends on the correlation betw
the particles’ betatron period and the period of the scallo

These expressions can be conveniently approximated
both the cases of a matched beam in a channel of disc
thin solenoids and a mismatched beam in a uniform chan
for modest oscillation magnitudes, using the envelope eq
tion for the beam envelope radius edger b @6#,

r b91k0
2r b2

2K

r b
2

4«un
2

r b
3 50, ~36!

where the unnormalized emittance is defined as«un5«/bg
andk0 is the undepressed betatron wave number. In the l
of laminar flow~vanishing unnormalized emittance«un!, the
rms beam divergence for the matched, periodic case w
thin solenoids is given by
’s
of
ty

i-
e
tes
f
l.
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ā25
K2

3r b
2 l s

2, ~37!

where l s is the separation between solenoids. For this ca
the average rms emittance growth rate is@using Eq.~34!#

D«

Dz
'
&

36

I

I A

K2

r b
2 l s

25
&

9 S I

I A
D 3 l s

2

r b
2g6b6

~matched, periodic focusing!. ~38!

For the case of a mismatched beam in a uniform focus
channel, we use the envelope equation to find the enve
wave number,ke5A4K/r b

2116«un
2 /r b

4. For the case where
the unnormalized emittance is very small~quasilaminar
flow!, we find @using Eq.~35!#

D«

Dz
'
&

6

I

I A

K

r b
2 d25

&

3 S I

I A
D 2 d2

r b
2g3b3

~mismatch, uniform channel!. ~39!

It should be remembered that the emittance growths
scribed in Eqs.~38! and ~39! are for specific focusing sce
narios, which leads to the property that the emittance gro
rate decreases with beam energy. Recall from Eq.~34! that
the emittance growth rate actually only depends on the be
current and the rms beam convergence or divergence. E
tions ~38! and ~39! are presented for comparison with th
emittance growth from the beam’s nonlinear free energy
with simulations.

IV. DISCUSSION COMPARING THE MAGNITUDES
OF THE GEOMETRICAL EMITTANCE GROWTH

AND THE EMITTANCE GROWTH
FROM NONLINEAR FREE ENERGY

In this section we compare the magnitude of the predic
emittance growth for a scalloping beam in a uniform focu
ing channel, using Eq.~39! for the geometrical effect and
formulas in @6# for the effect of the nonlinear free-energ
effect. We additionally use the simulation codeSLICE to nu-
merically calculate the emittance growth for verification
the estimates. There is no nonlinear free energy and henc
thermodynamic emittance growth for a matched beam i
periodic channel, and no comparison is relevant.

Reducing the equations in@6# for the case of a scalloping
laminar beam in a uniform channel, we find that the em
tance growth~this is the total allowable emittance growt
and not a rate! becomes

«5
gbk0r bd

&
, ~40!

where, as before,d is the magnitude of the radial oscillation
For small initial emittances~where the undepressed betatr
wavelength is very nearly equal to the square root of t
times the generalized perveance divided by the equilibri
beam rms radius!, the total emittance growth is approx
mately

«'gbAKd, ~41!
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FIG. 3. Periodic focusing case~modified Lorentz force equation ignoring nonlinearities in the space-charge term!. ~a! Radial beam
profile. ~b! Average particle kinetic energy profile.~c! Externally applied magnetic field profile.~d! Emittance profile.~e! Final beam
phase-space plot.~f! Final beam configuration-space plot.
sc
q ic
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al
total
y is
and the rough initial emittance growth rate@using the de-
pressed betatron wavelength as a rough estimate for the
required for the generation of the emittance growth in E
~36!# is

D«

Dz
'AK

d« i

pr b
2 5A 2I

I Ag3b3

d« i

pr b
2 , ~42!
ale
.

where now« i is the initial normalized, rms emittance.
Comparing Eqs.~39! and~42!, we see that the ratio of the

geometrical emittance growth rate to the thermodynam
emittance growth rate is&pd(I /I A)AK/6« i . The geometri-
cal emittance growth tends to dominate under the conditi
of large radial oscillations, low energy, and small initi
emittances. For the numerical example used before, the
expected emittance growth from the nonlinear free energ
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FIG. 3 ~Continued!.
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on the order of 1000 mm mrad; however, the geometr
emittance growth rate is about twice the thermodynam
emittance growth rate~for initial emittances of about 30 mm
mrad!. At lower energies, the geometric effect becomes m
dominant—at 3 MeV, the growth rate associated with t
effect is about six times as great as the emittance gro
from the nonlinear free energy.

In Fig. 3, we show theSLICE outputs for a periodic focus
ing case. In Fig. 3~a!, we see the radial profile, in Fig. 3~b!
we see the average particle kinetic energy, in Fig. 3~c! we
see the externally applied axial magnetic field, in Fig. 3~d!
we see the emittance evolution, in Fig. 3~e! we see the final
phase-space plot, and in Fig. 3~f! we see the final
configuration-space plot. In this simulation we modified t
Lorentz force equation to eliminate the nonlinearity asso
ated with the space-charge term so the effect from the
ticle energy variations would be very clear. Note the bend
back of the beam’s phase-space profile, in contrast to
seen in Figs. 1~c! and 2~c!, where the emittance is due t
only a differential betatron rotation. This deformation of t
particles’ phase space leads to a hollowing out of the bea
density in configuration space. The average emitta
growth rate is about 1.4 mm mrad per meter, in rough ag
ment with Eq.~38! ~which predicts about 2.1 mm mrad pe
meter!. Because we used a nearly matched distribution in
simulation, there is no appreciable emittance growth fr
any excess nonlinear free energy.
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In Fig. 4 we show theSLICE outputs for a mismatched
beam in a uniform focusing channel. In Fig. 4~a! we see the
radial profile, in Fig. 4~b! we see the average particle kinet
energy, in Fig. 4~c! we see the emittance evolution, and
Fig. 4~d! we see the final phase-space plot. The Lorentz fo
equation was also modified in this simulation to eliminate
nonlinearity associated with the space-charge term. Again
see the bending back in the beam’s phase space, an
average emittance growth of about 1.1 mm mrad per me
again in rough agreement with that predicted by Eq.~39! ~2
mm mrad per meter of drift!. For this case, there should als
be additional emittance growth from excess nonlinear f
energy, and with the parameters used in the simulation,
approximate emittance growth rate from the nonlinear f
energy should be of a similar magnitude. However, no th
modynamic emittance growth is observed in the phase-sp
plot ~where it would appear as a broadening of the pha
space distribution instead of a curvature!, because it is sup-
pressed by the linearization of the space-charge term.

Of the mechanisms studied in this paper, the effects fr
beam scalloping will probably dominate in practical bea
lines and accelerators, even at high beam energies@remem-
ber that in Eq.~34! the emittance growth rate only depen
on the beam current and rms divergence, and is indepen
of the beam energy#. In regards to that mechanism, we ca
make the following relevant observations.
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FIG. 4. Mismatched beam
with uniform focusing ~modified
Lorentz force equation ignoring
nonlinearities in the space-charg
term!. ~a! Radial beam profile.~b!
Average particle kinetic energy
profile. ~c! Emittance profile.~d!
Final beam phase-space plot.
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~1! For a mismatch in a uniform channel, the rms em
tance as defined in Eq.~1! will grow both from geometric
reasons and from thermodynamic reasons. Once a new
tionary state is established and the beam is no longer
matched, both the thermodynamic and geometric emitta
growths vanish. The total amount of emittance growth fro
the nonlinear free energy is predictable from physical ar
ments@Eqs.~36! and~37!#; the rate of emittance growth from
the geometric effects is also@Eqs.~34! and ~35!#. Either ef-
fect can lead to the largest contribution in the total rms em
tance, depending on the depressed betatron period, the
current, the beam radius, and the beam energy. As a rule
geometric mechanism will dominate for intense, hig
energy, low-emittance beams.

~2! For matched beam oscillations in a periodic focus
channel, the beam is already in a stationary state and the
no excess nonlinear free energy leading to an emitta
growth. However, the geometric emittance growth will co
tinue essentially unbounded at the same rate~it will only stop
when the energy variations lead to complete betatron mix
which would take a number of depressed betatron period
the order of the beam energy divided by the change in p
ticles’ energies!. Since the emittance growth is not tied into
relaxation period of the beam, the total rms emittance gro
can become immense. The rate of the emittance growt
just dependent on the beam current and the rms diverg
angle of the envelope.
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~3! The emittance oscillations that increase in magnitu
due to the change in particles’ axial velocity as the be
compresses and expands may also become problemati
practical accelerator beamlines.

~4! The hollowing out of the beam@seen in Figs. 3~e!,
3~f!, and 4~d!# due to these geometric mechanisms can tr
ger additional emittance growths from both the nonline
free energy of the nonuniform beam density and also fr
mechanisms that exist in the emittance-dominated reg
@18#.

~5! These effects can scale strongly with beam ene
@see, for example, Eqs.~38! and~39!#. This leads to a rough
quantitative evaluation of how important it is to maintain
high diode voltage, in terms of both the induced emittan
growth and the associated distortion in phase space. An
jector at half the voltage, but with similar optics, will hav
well over an order of magnitude more emittance growth a
phase-space distortion in the anode magnet capture reg
than an injector at full voltage.
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